Design of an Intelligent Controller Based on Wavelet Neural Network to Improve the Stability of Power Systems
نویسنده
چکیده
To damp the oscillations in a power system, a new intelligent controller is proposed. This controller is an online trained wavelet neural network controller (OTWNNC) in which adaptive learning rates derived by the Lyapunov stability are employed to guarantee the convergence of the proposed controller. During the online control process, the identification of system is not necessary, because of learning ability of the proposed controller. One of the proposed controller features is robustness to different operating conditions and disturbances. Moreover, the Prony method is used to obtain the exponential damping of power system oscillations in this paper. The test power system is a two-area four-machine system power. The simulation results show that the oscillations are satisfactorily damped out by the OTWNNC.
منابع مشابه
Effect of Distributed Power-Flow Controller (DPFC) on Power System Stability
Distributed flexible AC- transmission system (D-FACTS) is a recently advanced FACTS device with high flexibility and smaller size. The DPFC can control power flow in transmission lines, regulate bus voltages and it can also enhance stability margin in power grids. Adaptive-neural network-based fuzzy inference system (ANFIS) combines features of artificial neural network and fuzzy controller. Th...
متن کاملApplication of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملStudies with a Generalized Neuron Based PSS on a Multi-Machine Power System
An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...
متن کاملUsing Neural Network to Control STATCOM for ImprovingTransient Stability
FACTS technology has considerable applications in power systems, such as; improving the steady stateperformance, damping the power system oscillations, controlling the power flow, and etc. STATCOM is oneof the most important FACTS devices used in the parallel compensation, enhancing transient stability andetc. Since three phase fault is widespread in power systems, in this paper STATCOM is used...
متن کاملAn Intelligent Method Based on WNN for Estimating Voltage Harmonic Waveforms of Non-monitored Sensitive Loads in Distribution Network
An intelligent method based on wavelet neural network (WNN) is presented in this study to estimate voltage harmonic distortion waveforms at a non-monitored sensitive load. Voltage harmonics are considered as the main type of waveform distortion in the power quality approach. To detect and analyze voltage harmonics, it is not economical to install power quality monitors (PQMs) at all buses. The ...
متن کامل